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With the formalism of the path-integral into molecular-orbital theory, we introduce the qua- 
turn fluctuation into the molecular ground state. As a consequence, a non-linear formulation 
of the molecular orbitals is obtained. Then, we connect the non-linear term of the effective 
Hamiltonian with the solvent effects of the environment surrounding the molecular system, 
and explain this mechanism. 

1. Introduction 

When we inmerse a molecular  system in a solvent, we are adding Coulombic  
fields to the system, deforming its electronic structure of  the ground state. These 
fields produce local deformation,  which, in turn, manifests an energy and electro- 
nic charge shift resulting f rom ground-state fluctuations. Years ago Yomosa  et al. 
[1] and Tapia et al. [2] showed some theoretical evidence justifying the preceding 
s ta tement  in the molecular-orbital  theory. The field acting on the system is charac-  
terized as a self-dependent reaction field. Here, the term self-dependent means  
that  the field acting upon  the system depends on its electronic structure and geome- 
try. Therefore,  the general equation of  the state of  the molecular  system in the 
self-dependent field can be given by a non-linear Schr6dinger equat ion [1 ]. 

Fur thermore ,  a quan tum mechanical  reaction field theory of  the solvent effect 
has been proposed. As a limit case it contains Onsager 's  model. It also leads to an 
effective non-linear Hamil tonian for the molecule in solution, and hence a tool for 
studying changes of  the electronic charge distribution in molecular  properties. 
The approximate  solution of  the non-linear equation within the molecular-orbi tal  
f ramework  is presented; correlation defaults to the Hartree-Fock-l ike solutions are 
stated [2]. 

More  recently Tapia [3] has proposed a generalized react ion field theory of  sur- 
rounding medium effects on the electronic wave function of  the solute or the subsys- 
tem immersed therein. He explains that  the reaction field is given in a compact  
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functional form factorized into a solute charge density and a reaction field suscept- 
ibility. It is important  to note that the later depends on the geometry and static 
polarizability distribution of the surrounding medium. 

The aim of this paper is to propose a link between the non-linear formulat ion 
by the path integral method [4] and the solvent effect. Further,  we provide an expla- 
nation of  the surrounding medium induced ground state quantum field fluctuation 
which produces an energy and electronic shift of  the solute and emphasizes its 
non-linear character. 

2. Ma thema t i ca l  outl ine 

In this section we present, in the context of the molecular-orbital theory, a collec- 
tion of  formulae that we have already derived in previous publications in order to 
introduce quantum fluctuations in the ground state of the electronic molecular sys- 
tem [5], and a brief version of  the theory in the non-linear case [4]. Its basic aspects 
are outlined here. 

Let us consider that the time-independent N-electron molecular Hamil tonian 
H can be written as 

N N 
H =  ~ Ha + ~ V(ro, r~), (1) 

where Ha is the Hamiltonian of  the a th  electron in the field of  the atomic nucleus 
and V(r~, r~) is the electron-electron repulsion. 

The multielectronic wave function ¢' is approximated by a Slater determinant  
D of  the molecular orbitals ~,~, 

¢ ' ~  O = E t S P  e [~'I,~'2,..-,V/N[, (2) 

where 6p = ( -  1 )e (p  is the permutat ion operator). 
The matrix elements of  the evolution operator of the molecular system between 

the initial state [Dt~ ) and the final s ta te  <Dtr [ can be written as 

Z(N) = (Otr [e -iH(tr-ti) IOt~ 5, (3) 

where ti, tf are the initial and final times, respectively. 
One may represent the molecular orbital on a space-time lattice which is gen- 

erated by breaking the time interval into M time slices of  time durat ion 
7 = (tf - ti)/M. We first factorize the evolution operator into M terms of  the form 
e -irH. Hence, eq. (3) reads 
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M 
Z ( N )  = I I  (D'r ID'u>(D'ule-irulD'M-')''" 

I 

-irH ... (D,,,,_,I e ID,,.,_,_, ) . . .  (D,,ID,,. (4) 

Then, with the above result we arrive, after little algebra, at the following final 
form of Z(N) [41: 

fi/fi Z(N) = f dgt*a(tj) d~u3(tj) (Dt, IDt.)<Dt, ID,,) 
j I~ot,13 

x 6[f ~,;(ts)~,e(tA a,o- 6~,e] } 

[ M N - l f  I, 
x exp - i r | ~ .  ~ J  dv N*~(tl)H3N.(tj) 

L u ,e 

~,.( ,)~,e( j)v(,.,6){v,~(t,)~( 0 
(5) 

where 6, the Dirac function of eq. (5), has the following Fourier integral represen- 
tation: 

8 [ f  N*a(tj)N3(tj) dv- 6~,.] 

1 -- [(2~i)1/2]N2 f de~eexp{ie~,a If ~,;(tj)~,a(tj)dv-6~,~] }.  (6) 

We are now able to introduce the quantum fluctuations into molecular-orbital 
theory using the Gaussian approximation on the 6-Dirac Fourier integrals equa- 
tion (6) introduced by Wilson in an Ising model on the lattice [4], 

where A = 1/[(2"xi)1/2] N2, 
quantity. 

b 
+~ f ¢;(,j)¢,(,j) av + ..] } ,  

b/2=-2%,~6~,~, b - - - 4 U ' ,  and U' is a 

(7) 

positive 
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Taking into account the Gaussian approximation (7) in (5), the propagator 
Z(N)  becomes 

s * t Z(N) = A H d~u:(j) a~un(tj) (D,,IDt~,)(Dt, ID,~) ae:,n 
J 

× exp{-i~'Heff[~u~,, V~, e]} } ,  (8) 

where the effective Hamiltonian Hcff[q/*, ~u, e] can be cast as 

Heff[g t , V, e] = [~ , ~,1 + ~ U av v*~(tj)~(tj) 

+ ~ Z  dvg/~(tj)g/~(j)+ (9) 
J 

the constant U = U'/7" and the functional H[~u*, g/] is given by the expression 

s s , , , t t H[V*, V] = dv V~(tl)Hn~a(tj) - dv dv' V~(tl)V~( j) 

× V(r~,r~){!z i~(t l )V~(~.)-  V~(O)!//~(tj)} }. (10) 
Therefore, we now consider the effective Hamiltonian in a short time slice. 

Therewith, according to Wilson's algebraic derivation [4] we add and substract 
appropriate terms in each of the j  a n d j  + 1 sites in order to arrive at the effective 
Hamiltonian Heft in a site representation. So that, .4 (V~ (tj) [ = (~'~ (tj+ 1 ) [ - (~'~ (tj) [ 
is the increment of (~U(ty) I in the j-site, 

b 
(R (o t . ) ) j=-~ (Ho~) j , j+ l  (Ha) j , j+  1 1, 

U' 
(U(a))j,j+ 1 - (H~)j,j+ 1 and (B(a,~3))j,j+ l = (V(r~,rn))j,j+l. 

Denoting the lattice spacing as a in the space R d (d = dimension of the real space 
R) in the continuum limit (a =~ 0, M => ~ ) ,  we can switch to the lattice using the 
correspondence formulae: 

j ~ r ,  

~-~ ~ a-dd, 
J 
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~~-" zalv<,(tj) b<v~(ts) I =¢> a 2°1v~5 
0(q/~l 

j Or Or 

Besides, we have changed the scale of the wave product I~'~)(~%l ~a2-a] ~'~)<~1. 
Thus, making use of the Coulomb and exchange integrals J~ and/in, namely, 

J~ = Sdr a ~'*Bo(a,/3)~'a, (11) 

= f  *B K~ drd V~ o(C~,/3)tu~, (12) 

where 

B0(ot,/3) = ad-4B(oz, 1~), (13) 

the effective Hamiltonian equation (9) in the continuum takes on its desired form: 

Hefr[lu*'!u'e]=Sdrd{D(Olv~)O(!U~lm2(a) Or Or 2 i!U~,)(V,~i 

where 

+ [21v=bJe(v~l- Iv=>K~(v=l]+ (Iv=b(vnl) 2 , 

(14) 

m~(a) = 2R(a)a_ 2 
2 

(15) 

and 

U0(ol) _ 4!2ad_ 4 U(o0 (16) 
4! 

We notice that the corresponding effective potential Veff reads 

and it has one or two minima depending on the sign of the coefficients U0(a). So, 
when the U0(a) vanishes for all particles, expression (14) reduces to the classical 
effective Hamiltonian of the linear problem [5]. 

With reference to the Z(N) propagator, eq. (5) in the continuum [4] reads 

I f i i  c i" Z(N) = ©[~*]~D[~] de:,~exp - i  dt H.ff[~u*,~,e , (18) 
~,/3 . . I  \ , / t i  
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where the path integral measure 73 [V*] 73[V] is given as 

73[V*]73[V] = M-.~oo;r--~olim A O { N ~ f  dv*~(tj) (DtrlDtu)(DtjlDt~)}. 

(19) 

3. Solvents effect 

The non-linear Schr6dinger equations arising from the Hamiltonian equation 
(14) can be used to describe quantum-mechanical systems that interact with their 
surroundings. Through its wave function, the molecular system interacts with its 
environment by inducing a net field which then acts back on the system itself. 

Thus, the self-consistent reaction field theory of solvent effects is used as an ade- 
quate framework to calculate an effective electronic wave function and the electro- 
nic energy of a molecule immersed in an environment, where homogeneous and 
heterogeneous reaction fields in the modelled, surrounding medium effects are 
involved [6]. 

We are now ready to link the above-developed formalism of the path integral 
with the solvent effects. Thus, if we split the effective Hamiltonian equation (14), 
after a partial integration, into the Hartree-Fock part 

/ { ~  [Orr mOR(a) HH-V[V*, V, e] = dr d -Iv.) -+ 2  (2Ja- ge)] <v l} 
(20) 

plus the interaction part 

H'[V*' V' e] = Z Uo(a) / d/  (Iv&(v l) ,~ 4! 

= ~ gr~ a) A=V[v*, V] (21) 

i 

oe 

then, the propagator Z(N) equation (18), by using the eqs. (20) and (21) in expres- 
sion (14), may be rewritten as 

N 

×exp(-if" ) dt [HH-F[V*, V, ¢] + HI[V*, V, c]] 
\ J t i 

= ZH-F[V*, V, *]ZI[V*, V, ~]. (22) 
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We can observe that the potential V[g/*, ~] of the Hamiltonian interaction part 
in eq. (21) is a function of the ~,* and ~,. This result is in agreement with Sanhueza et 
al. [7], where they show that it would be well represented by a power series of the 
first order density. The potential function appears by applying quantum fluctua- 
tions to the molecular system, which is produced by surrounding a molecule by a 
dielectric environment as in the SCRF theories of solvent effects [1,2]. Thus, the 
parameter U0(a)/4! could describe the solute-solvent interaction, which depends 
upon the mean dielectric constant of the environment. 

Therefore, the potential interaction could be expressed as V[~g*, N]<~u~lpTl~,~> 
• g .  where g is a coupling tensor, Ix is the total dipolar moment opera- 
tor and the superscript T designates the transpose of a matrix. 

Then, in the case of the real space, the space dimension d = 3, ZI[~*, ~, e] can 
be expressed similar to Onsager's reaction fields approach [2] by 

/ .,. "/ ( [ ' r  4, ) 
Oo(a)  v * Zi[g/*, ~', el = ~[~*]©[~u] H ae,,~ e x p - i  dt~-~ [~,,, ~,,1 

j I i 

N 

(z" x exp - i  dt ~_~ (-Yo(a) 
4! 

\ 
I 

/ 

(23) 

From the above results, we can obtain the Roothaan equation with the solvent 
effects involved• In the semiempirical approximations (CNDO/2) (see Villar et al. 
[8]) we can realize calculations of the molecular electronic structure with solvent 
effects using the dielectric constant as imput data. 

The above calculations are only approximate, there are other ways of evaluating 
the path integral ZI[~'*, ~', e]: the Monte Carlo algorithm [9] and perturbedly like 
an w-expressium technique in critical phenomena [10]. 

Our procedure would be an alternative treatment of the influence of the solvent 
in the chemical bond by the Monte Carlo path integral formalism [11], but then 
using it in the molecular orbital theory framework. This means that we use like 
coordinates the coefficients of the atomic orbitals representations• In relation to 
this, but in physical space, we also mention the considerable effort made on new 
methods of Monte Carlo path integral calculations [12,13]. 
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